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Abstract. There is a growing interest in leveraging functional programming lan-

guages in real-time and embedded contexts. Functional languages are appeal-

ing as many are strictly typed, amenable to formal methods, have limited muta-

tion, and have simple, but powerful concurrency control mechanisms. Although

there have been many recent proposals for specialized domain specific languages

for embedded and real-time systems, there has been relatively little progress on

adapting more general purpose functional languages for programming embedded

and real-time systems. In this paper we present our current work on leverag-

ing Standard ML in the embedded and real-time domains. Specifically we de-

tail our experiences in modifying MLton, a whole program, optimizing compiler

for Standard ML, for use in such contexts. We focus primarily on the language

runtime, re-working the threading subsystem and garbage collector. We provide

preliminary results over a radar-based aircraft collision detector ported to SML.

Keywords: Real-time systems · Predictable GC · Functional programming.

1 Introduction

With the renewed popularity of functional programming, practitioners have begun re-

examining functional programming languages as an alternative for programming em-

bedded and real-time applications [13, 7, 25, 8]. Recent advances in program verifica-

tion [2, 12] and formal methods [1, 14] make functional programming languages ap-

pealing, as embedded and real-time systems have more stringent correctness criteria.

Correctness is not based solely on computed results (logic) but also the predictability of

execution (timing). Computing the correct result late is as serious an error as computing

the wrong result.

Functional languages can provide a type-safe real-time implementation that, by na-

ture of the language structure prevents common errors and bugs from being expressed,

such as buffer under/over flow and null pointer dereferencing. Programmers can thus

produce higher fidelity code with lower programmer effort [?]. Additionally, func-

tional programming languages are easier to analyze statically than their object oriented

counter parts, and significantly easier than C. As such, they purport to reduce time and

effort from a validation and verification perspective. Since many embedded boards are

now multi-core, advances in parallel and concurrent programming models and language

implementations for functional languages are also appealing as lack of mutable state of-

ten results in simpler reasoning about concurrency and parallelism.

There are, however many challenges that need to be addressed prior to being able to

leverage a functional language for developing a real-time system. Functional languages
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must exhibit deterministic behavior under resource constraints, have runtimes that can

be bounded in space and time, provide predictable and low latency asynchronous re-

sponsiveness, as well as provide a robust concurrency model, to name a few [8]. We

surveyed the current state of the art of functional languages and their suitability for

developing real-time systems [17], by assessing metrics like the predictability of the

language runtime, threading and concurrency support, as well as the ability for the pro-

grammer to express real-time constraints. We observed that all of the languages exhib-

ited unpredictable behavior once competition for resources was introduced, specifically

in their runtime architectures. The major challenges in providing a predictable language

runtime performance for the languages surveyed was their lack of a real-time garbage

collection (RTGC) mechanism (predictable memory management).

In this paper we introduce a predictable language runtime for Standard ML (SML)

capable of executing real-time applications [15]. We use MLton [16], a whole program

optimizing compiler for SML, as a base to implement the constructs necessary for using

SML in an embedded and real-time context. We discuss adding a new chunked object

model for predictable allocation and non-moving real-time garbage collector with a

reservation mechanism. We leverage our previous experience with Multi-MLton [22]

and the Fiji real-time virtual machine [19] in guiding our modifications to MLton. Our

changes sit below the MLton library level, providing building blocks to explore new

programming models. Our system supports running programs built using this system

on RT-Linux, a real-time operating system. We present performance measurements,

indicating the viability of our prototype, which is publicly available for download at:

https://github.com/UBMLtonGroup. This paper is an extension of our pre-

vious short workshop paper [13], to which we have added a detailed description of

the MLton runtime, the consequences of the design decisions adopted by MLton, and

the details of our chunked, concurrent, reservation based real-time GC algorithm. We

present additional benchmarks, including a full evaluation of our system on a radar

based aircraft collision detector.

2 MLton Architecture and Consequences for Real-time

MLton is an open-source, whole-program optimizing SML compiler that generates very

efficient executables. MLton has a number of features that are well suited for embedded

systems and that make it an interesting target for real-time applications.

2.1 MLton Threads

MLton compiled programs consist of only a single OS level thread, over which many

green threads are multiplexed. There is a set of three process-wide stack pointers, dis-

tinct from the system stack and stored in a monolithic global structure called GC State,

that point to the stack bottom, top and limit of the currently running computation. A

thread in MLton is therefore a lightweight data structure that represents a paused com-

putation consisting primarily of a pointer to the thread’s stack as well as an index into

the stack to allow for unwinding in the case of an exception.
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When a thread is paused, the amount of stack space in use is saved from the current

process-wide stack to the thread’s stack structure (the other two fields are essentially

constants and would only change if the stack was moved or grown by the GC). When

a thread is resumed, the stack pointers are restored to the process-wide stack fields and

computation continues. Thus, thread context switching at its most basic level consists

of a pointer swap. An advantage of this implementation is that context switches occur

rapidly, and SML stack operations, again being distinct from the system stack, are rel-

atively cheap and facilitate deep recursion. However, this comes at a cost when trying

to move to a parallel implementation. The thread runtime semantics are deeply em-

bedded into the compiler and many assumptions are made that are unsafe in a parallel

architecture.

MLton provides a logical ready queue from which the next runnable thread is ac-

cessed by the scheduler. This is a regular FIFO queue with no notion of priority, how-

ever the structure is implicit, relying on continuation chaining and is embedded in the

thread switching code itself. This means that there is no single data structure that gov-

erns threads nor is there an explicit scheduler. Threading and concurrency libraries (e.g.

CML and ACML) build on top of the MLton threading primitives, therefore, introduce

their own threading primitives, scheduler, policy, as well as structures for managing

ready, suspended, and blocked threads. This layering of low level threading constructs

and higher level scheduling constructs opens up a variety of possibilities with respect

to rapidly exploring different scheduling models without needing significant compiler

retrofitting.

Consequences for Real-time The concept of prioritization is useful for ensuring high

priority tasks execute accordingly. When adding prioritization to thread scheduling, one

approach is to utilize the underlying OS for scheduling. However, as noted in the section

above, mapping pools of green threads to OS threads leads to concurrency issues due

to MLton’s use of a single global structure for state tracking. Another approach is to

implement prioritization at the green thread layer. This is not preferable for two reasons.

First, there is no notion of pre-emption at the green thread layer. As noted above, MLton

threads are essentially chained continuations, and so a thread switch is entirely at the

discretion of the currently running thread. While one might argue that this could open

the way to the compiler generating a very finely calculated schedule, it would also lead

to unacceptable pauses due to I/O.

For example, if syntax is available for specifying timing constraints, then a pre-

determined (and validated) schedule can be generated [23], obviating the need for spec-

ifying priorities. However, if one of the green threads in the schedule attempts I/O, the

underlying OS would pause the entire process until the I/O completes. Therefore, we

believe that it is necessary for the compiler’s runtime to offer a clean, and safe, mapping

of green threads to OS threads so that, for example, I/O operations can be isolated onto

a separate OS thread without affecting high priority computations.

2.2 GC Architecture

MLton adopts a hybrid garbage collector that calls upon the runtime memory utilization

to decide the strategy it needs to use for collection. All SML objects are allocated in a
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contiguous heap. All objects are initially allocated in the Nursery section of the heap

in bump pointer fashion until the nursery runs out of space, upon which the garbage

collector is called. If the ratio of bytes live to nursery size is greater than a predetermined

nursery ratio, the runtime uses a minor Cheney copy GC [?]. A minor GC copies objects

from nursery to the beginning of the To space (i.e. appending to end of old generation)

thus increasing the old generation size and reducing To space and nursery size. When

there is no space in the nursery to allocate a new object, a major GC is triggered. It is

worthy to note that when there is no memory pressure, the To space is zero size and old

generation has the objects that have survived a collection. Therefore, the generational

GC isn’t triggered until the memory utilization is fairly large, but the garbage collector

can still be called for various other tasks like growing the stack.

Major garbage collection is performed in one of the two strategies. If there is enough

space to allocate a new heap, the same size of the current heap, then a Cheney copy GC

is performed. If there is not enough space for the second semi space, a mark compact

GC is performed. The compaction aids in de-fragmenting the heap as well as freeing

up more space. After the mark compact phase, the GC falls back to the minor GC for

subsequent collections, until it again needs to call a major GC.

MLton’s GC architecture is one that implements a “stop the world” (STW) ap-

proach. In this approach, all computation threads pause while the garbage collector

runs. This design decision was made keeping in mind the single computation model

of MLton, that the heap is more prone to corruption if multiple threads are accessing

the heap when the GC is copying objects or doing a compaction. Pause times vary de-

pending on the strategy being used for collection, it follows that minor GC takes less

time than a major GC. There are four kinds of ML objects: Normal (fixed size) objects,

weak objects, arrays and stacks. The arrays and stacks are generally allocated in the old

generation as they are more likely to persist longer than the other two kinds of objects.

Normal and weak objects are bump pointer allocated in the nursery and then moved to

the old generation based on their longevity.

Consequences for Real-time In a real-time setting the use of a STW GC is a deal

breaker. The cost of performing this GC is directly proportional to the utilization of the

heap, and if done during the tasks that have a tight deadline, it could lead to deadline

misses. Pre-empting the GC when it runs out of time could make it real-time compat-

ible but it will be useless as it could not be guaranteed that collection would always

complete. This could be addressed by implementing incremental collection [18] strate-

gies, but would require the GC to run as a separate thread which is contrary to MLton’s

single threaded computation model. The multiple GC strategies utilized by MLton fur-

ther complicates the case by making the maximum pause time more unpredictable, as

the strategy used for collection depends on the state of the heap when a collection is

triggered.

3 Real-time Extensions to MLton

To create a version of MLton that supports a real-time computation, we must address the

limitations described in the Section 2. At a high level, this includes moving concurrency
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to the OS level, with potential to support parallelism, extending the MLton threading

model to support priorities and multiplexing over OS threads, and redesigning the GC

to be real-time aware.

3.1 Concurrency and Threading

Main

MLton
thread	

MLton
thread

GC

MLton
Thread

PRI	0 PRI	1 PRI	2 PRI	N

...

POSIX	threads

Fig. 1: Priority Based OS/Green Thread Relationship Model

The first step to having a threading model that supports OS-level concurrency is

to split the green threads multiplexed over a single OS thread over multiple OS-level

threads. More over, to support real-time execution we also must split green threads

based on their priority. In the most simple case there exists at most one green thread

(computation) for any given priority supported by the system 1. Figure 1 shows our

concurrency model. An OS-level thread is created for each priority the system supports.

Currently we expose only the priorities that the underlying OS or Real-time Operating

System (RTOS) expose.

Migrating to a runtime system that leverages multiple OS-level threads, requires

re-engineering how MLton keeps track of the state of the system using the GC State

structure. This structure has numerous fields that store the current position of frontier,

current executing green thread, current StackTop/StackBottom among others and all

these values are accessed at any time by offsetting a pointer to this structure. The deci-

sion to use one single structure for storing all the global state was to make the access

fast by caching the entire structure on a register. When there is a single thread of ex-

ecution, there is no need to worry about concurrent access to the GC State and thus

the integrity of the state is maintained. Introducing multiple threads of execution brings

in a plethora of changes including the necessity to differentiate between the thread of

execution to which the value being stored belongs. Needless to say, threads must also

have controlled access to the shared fields in this structure. In RTMLton, we’ve de-

cided to keep GC State as a single structure, but implement arrays within it where

appropriate. This allows us to be more efficient when it comes to memory utilization

– an important consideration when targeting embedded systems. For example, finding

the current green thread running within the OS thread, we would refer to the index

GC State->currentThread[osthreadnumber].

1 Most real-time systems have a specific set of priorities they support.
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3.2 Creating a Real-time GC

To implement concurrent GC, it is necessary to have the garbage collector execute in

its own thread so that it can work independently to mutator threads (program threads).

Multi-core implementations of SML like MultiMLton take a different route in handling

this separation. They use a per thread heap and thus have a per thread GC which stays

coupled to the execution thread. Multiple heaps may pose other complexities (like read-

/write barrier overheads, global synchronization) in an embedded or real-time system,

which is why we chose a single shared heap.

A shared heap implementation is easier but brings us back to the difficult task of

pulling out the GC onto a separate thread. In doing so, we need to make sure each thread

is responsible for growing its own stack and allocating objects it requires. Although the

GC can scan and collect while mutator threads execute, mutator threads must be paused

to scan their stacks and construct a root set. This is necessary because MLton stores

temporary variables on the stack and if the GC were to run before the stack frame is

fully reified, the results would be unpredictable. MLton also will write into a newly

created stack frame before finalizing and recording the size of the frame. Without the

identification of safe points to pause the threads, the heap will be malformed with po-

tentially live objected considered dead. Fortunately, MLton identifies these safe points

for us. GC safe points in MLton are points in code where it is safe for the thread running

the code to pause allowing the GC to scan stacks.

Although GC safe points are pre-identified for us, the code generated by the com-

piler assumes a single threaded model and so we found problematic constructs such as

global variables and reliance on caching important pointers in registers for performance.

We needed to rework these architectural decisions. As discussed above, MLton tracks a

considerable amount of global state using the GC State structure so we must refactor

this structure, in particular, to make it thread-aware. MLton also uses additional global

state, outside of GC State structure, to implement critical functionality.

Handling Fragmentation The design of a real-time garbage collector should ensure

predictability. To eliminate GC work induced by defragmentation and compacting the

heap, we make sure that objects are allocated as fixed-size chunks so that objects will

never need to be moved for defragmentation through the use of a hybrid fragmenting

GC [20]. This chunked heap is managed by a free list.

Normal and weak objects are represented as linked lists. Since object sizes in ML-

ton are predictable at compile time, we achieve constant access time when allocating

these objects by sizing our chunks to fit an object. Arrays are represented as trees, in

which each node is fixed-size. Internal nodes have a large number of branches (32 in

our implementation), which keeps access time log32(n) and is close to constant. MLton

constantly allocates small sized arrays and even zero sized arrays. We represent such ar-

rays as a single leaf to eliminate the overhead of finding the immediate child of the root.

During collection, the GC first marks all fixed-size chunks that are currently live. Then

it sweeps the heap and returns all unmarked chunks to the free lists. This completely

eliminates the need for compaction in order to handle fragmentation.

Heap Layout: In MLton, the size of normal objects, arrays and stacks vary signifi-

cantly. Since one objective of a unified chunked heap is to prevent moving during GC,
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we need to have all chunks be of the same size. This does lead to space wastage in each

chunk as object sizes vary. However, this opens up room for potential optimizations

where we can further explore packing of multiple MLton objects into chunks either

based on object sizes or their lifetimes, making the GC much more efficient.

Object Layout: MLton already tries to pack small objects into larger ones. In our

empirical study, most normal MLton objects are around 24 bytes and arrays are close to

128 bytes. We choose 154 bytes as the chunk payload that carries MLton object along

with an extra 12 bytes overhead associated with normal object chunk management and

an extra 56 bytes to manage array chunks. Normal objects that are larger than 154 bytes

are split into multiple chunks. In our current implementation, we limit normal objects to

two chunks each even though we haven’t noticed objects that are greater than 64 bytes.

The object layout is depicted in Figure 2.

MH Payload CH CO Next Payload

MH	=	MLton	Header	CH	=	Chunk	header	CO	=	Chunk	Offset	

P

Internal	pointers

Internal	pointersInternal	pointers

Array	PayloadMAH CH NC FO Root Next

...

P

MAL=MLton	Array	Length	
MAH	=	MLton	Array	Header	
NC=	No.	of	Chunks
FO	=	Fan	Out

PayloadMH

MAL

Fig. 2: Chunked object layout

In MLton, arrays are passed around using a pointer to its payload. The header and

length of an array are retrieved by subtracting the header size and array length size from

current pointer. We stick to this representation as much as possible. Array nodes are

represented in Figure 2. Internal nodes carry 32 pointers to their children. We pass an

array around via a pointer to its first leaf. A root pointer and a next pointer is embedded

in the leaf node. The leaf pointer connects all leaves that actually carry payloads for

potential linear traversal optimization. For an array that is 128 bytes or less, we can

fit it into 1 leaf chunk. For arrays that span multiple chunks, we construct trees. When

accessing an element of an array, we first follow the root pointer to retrieve the root

node and then access the array in a top down manner, in which we determine the branch

in current node by index % FO, then we follow the branch to an alternative internal

node. The process is repeated until we finally arrive at a leaf.

Array Limitations Flattening refers to the multiple optimization passes in MLton

that reduces the overhead for accessing nested objects. Unfortunately, it is difficult to

reliably decide on an array element size after flattening that can be used at the time of

allocation, since tuples can carry elements that differ in size. Our tree-structured array

has no information about flattening and the access scheme generated from MLton after
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flattening cannot work with our chunked array model. Hence, we need to disable some

of the flattening optimization passes. We first tried disabling all the flattening passes

including local flatten and deep flatten. But in our later investigation, only deep flatten

will try to flatten objects in arrays. The local flatten passes are totally compatible with

our implementation.

GC model For collection, our concurrent GC leverages a traditional non-moving, mark

and sweep scheme with a Dijkstra’s incremental update write barrier [5]. It is needless

to say that our GC thread runs on its own OS thread and operates independently of the

mutator, repeating the steps below. Each loop signifies a GC Cycle :

Wait for synchronization- In this phase, the GC is waiting for all the mutator threads

to synchronize at the GC checkpoints so that it can continue with its work in a safe

manner. MLton performs complicated data flow and control flow analysis to insert GC

checkpoints to minimize the number of garbage collections needed. However, the data

flow and control flow analysis assumes a single heap model and objects are calculated

by number of bytes required (and not chunks), which is incompatible with our model.

One solution is to patch up each path in the GC check flow, redirecting all GC checks

to our GC runtime function and let the C runtime function decide whether a garbage

collection is needed. This method has high overheads in the form of preparing the code

to jump to a C call which involves having to save all the temporaries currently live

onto the stack as local variables and adding a C FRAME marker onto the stack all of

which not only increases the stack size but also affects overall runtime of the program.

In RTMLton, we currently add an optimization pass (gc-check) which sums up the

allocations in a block and inserts a check to see if there are adequate chunks left. If

the block does not allocate objects at all, we ignore it. Such a check only introduces

a branch and an inlined integer comparison, which is much faster and more efficient

than the former method. Since arrays are allocated by the C runtime, MLton ensures

the stack is completely prepared before jumping into GC arrayAllocate. We can

thus safely make GC checks in the array allocation.

Currently, each thread walks its own stacks and marks all chunks that are immedi-

ately reachable from its stacks using a tricolor abstraction. All the chunks that are im-

mediately reachable from the stack are marked black (meaning reachable and explored)

and the children of the black chunks are shaded gray (reachable but unexplored) and

then put into a worklist. It follows that any chunk marked white, or unmarked, is not

reachable and hence would be eventually collected. This model where each thread scans

only the root set from the stacks and the GC scans the rest and sweeps concurrently, is

different from that of MLton’s monolithic GC model, in that the mutator doesn’t have

to wait till the entire heap is scanned. By having each thread scan its own stack, at the

end of its period, also contributes to making the GC work incrementally which would

give good mutator performance. When all the mutators have finished marking their own

stacks at their GC Checkpoints they set a bit to indicate that they have synced and the

last mutator to do so would signal the GC to start its process in parallel as all the muta-

tors go about doing their respective jobs.

Start marking- The GC starts marking the heap when it receives the all synced

signal from mutators. All object chunks in the worklist are gray at this point and the GC
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starts by marking all reachable chunks from each worklist item. Each time a worklist

object is picked up, it is marked black and when it has been fully explored, it is removed

from the worklist. Marking proceeds as before with the chunk being marked black when

reachable and all the chunks immediately reachable from it are shaded gray. The GC

aims to collect all reachable objects without wrongfully collecting objects in use. But

with the mutator allocating while the GC is marking, it could lead to a rearrangement

of the heap by the mutator that invalidates our marking. Which is why we make use of

a Dijkstra style incremental update barrier which enforces the strong tricolor invariant.

The strong tricolor invariant states that there should be no pointers from black objects

to white objects. The write barrier is inserted by the compiler on any pointer store on

the heap, and upholds the strong invariant by shading gray, any pointer store that moves

a white chunk into a black chunk. The write barrier is made to selectively perform

this operation (turned on) only when the GC is running in parallel and at other times

only does an atomic comparison to see if it the GC is running or not. When the write

barrier is turned on, all new object chunks are allocated gray so as to protect them from

collection. Marking phase ends when the worklist is empty.

Sweep- Once the marking is done the GC traverses the heap contiguously and

reclaims any unmarked chunks back to the free list. While it sweeps the heap, the GC

also unmarks any chunk that is marked in order to prep it for the next GC cycle. Adding

a chunk back to the free list is done atomically and involves some small book keeping

work like clearing out the chunk headers. Since we are using a chunked heap, we do not

need to perform any defragmentation and the addition of chunks back to free list makes

it available for reuse almost instantly.

Cleanup and book keeping- Before the GC goes back to waiting for synchroniza-

tion phase, it does some clean up and book keeping like clearing out the sync bits and

waking up any mutator that is blocked while waiting for the GC to complete its cycle.

In a typical scenario no mutator will be paused while the GC is running except initially

to scan its own stack but when the memory is very constrained it may so happen that

the mutator does not have enough free chunks to satisfy its allocation requests. Ide-

ally, RTGCs rely on efficient scheduling policies to ensure that the GC runs enough to

make sure these scenarios are avoided, but in the absence of such policies we currently

block the mutator if it doesn’t have enough chunks free and the GC is running. The GC

decides to die with an Insufficient memory message when it has made no progress(all

mutators are blocked) in 2 consecutive GC cycles.

Memory reservation mechanism MLton generated C code is split into basic blocks

of code with each block containing multiple statements and ending with a transfer to

another code block. These code blocks are translated from the SML functions and an

SML function can span multiple C code blocks. When an allocation is done, the allo-

cated objects are pushed into stack slots if the transfer out of the code block has the

potential to invoke the GC, failing which may result in the newly allocated object being

wrongfully collected. In vanilla MLton, GC can be invoked only from GC safepoints,

which ensure that the allocated objects are pushed into appropriate stack slots before

the GC runs. In RTMLton however there are two possible places where the GC can
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Scenario	1	-	WriteBarrier	turned	ON	&	more	than	2	free	chunks	available
Alloc	1
...

Alloc	2	
...

Push	alloc	to	Stack

Alloc	1
...

Alloc	2	
...

Push	alloc	to	Stack

Alloc	1
...

Alloc	2	
...

Push	alloc	to	Stack

Scenario	2	-	WriteBarrier	turned	ON	&	1	free	chunk	available
Alloc	1
...

Alloc	2	
...

Push	alloc	to	Stack

Alloc	1
...

Alloc	2	
...

Push	alloc	to	Stack

Alloc 1
...

Alloc 2 
...

Push alloc to Stack

Alloc	1
...

Alloc	2	
...

Push	alloc	to	Stack

GC

Alloc	1
...

Alloc	2	
...

Push	alloc	to	Stack

Alloc	1
...

Alloc	2	
...

Push	alloc	to	Stack

Alloc	1
...

Alloc	2	
...

Push	alloc	to	Stack

Scenario	3	-	WriteBarrier	turned	OFF	&	more	than	2	free	chunks	available

Scenario	4	-	WriteBarrier	turned	OFF	&	1	free	chunk	available

Alloc	1
...

Alloc	2	
...

Push	alloc	to	Stack

Alloc	1
...

Alloc	2	
...

Push	alloc	to	Stack

Alloc	1
...

Alloc	2	
...

Push	alloc	to	Stack

Alloc	1
...

Alloc	2	
...

Push	alloc	to	Stack

GC

Fig. 3: Allocation scenarios

be invoked: One, at GC safepoints and two, during allocation when there are no free

memory chunks available.

When the GC is invoked at the point of allocation in RTMLton, it leads to an edge

case where any previously allocated chunk might be wrongfully collected in very tight

memory scenarios, because they were not pushed into stack slots. An allocation state-

ment is not a transfer in MLton’s design and therefore it does not expect a GC to happen

at that point. Consider the scenarios in Figure 3:

Scenario 1 and 2 show the cases when the GC is running (i.e. write barrier is turned

ON) and Scenario 3 and 4 show the cases when the GC is not running (i.e. write barrier

turned OFF) . In Scenario 1, you have a code block with 2 sequential allocations and

there are more than 2 free chunks available. Since the write barrier is ON, both objects

are allocated gray and since there is more than 2 free chunks available, no GC is trig-

gered. In Scenario 2, there is just 1 free chunk available. So the first object is allocated

gray and when the second allocation happens, the GC is triggered. But since the GC

was already running, the first object in shaded and is not wrongfully collected by the

GC. Scenario 3 shows the execution when there are more than 2 free memory chunks

available. Since the write barrier is turned off, both objects are allocated white. Since
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there are enough memory chunks available, GC isn’t triggered and execution completes

normally. When there is only one free chunk available in memory, it leads to the case

as in Scenario 4. Since the write barrier is turned OFF (GC isn’t running) , Alloc1 is

allocated white. When control reaches Alloc2, there is a need to invoke the GC as there

are no free chunks left. But this time, Alloc1 is not shaded as in the case of Scenario 2

and is therefore wrongfully collected by the GC.

One possible solution to this issue is to convert all allocation into transfers (calls to C

functions) and then let MLton appropriately protect all previous allocations by pushing

them into stack slots before the next allocation happens. This would involve splitting up

each of the C basic blocks further into multiple blocks with each block containing only

allocation. We found that this however involves a considerable overhead in terms of the

code size as well as the stack space since the number of allocations done by a program

isn’t trivial.

LOCK;

while (free_chunks < (reserved_chunks + reqd_chunks))

{

UNLOCK;

GC_collectAndBlock;

LOCK;

}

reserved_chunks += reqd_chunks;

UNLOCK;

Fig. 4: Reservation mechanism snippet

Another way, which we find more efficient, is to guarantee that when a basic block

is being executed, it will either receive all the memory chunks it requests for allocation

or it will not execute at all. Thus guaranteeing that the GC won’t be invoked from an

allocation point. MLton already has information about the number of chunks allocated

(except allocations by runtime methods) in every block at compile time. We can use this

to our advantage by leveraging the gc-check pass we put in to do a little more than insert

the GC checkpoints. At the point where we insert the GC check, we reserve the number

of memory chunks the next code block needs. Reservation is done by atomically incre-

menting a counter before executing the block and then decrementing it when the object

is actually allocated. Figure 4 summarizes the logic involved in reserving allocations

before a block is executed.

If the number of free chunks available is lesser than what is already reserved and

what is required by the next block, a GC checkpoint is inserted by the optimization pass

and the mutator is blocked preventing the execution of the next block until woken up

by the GC. If there are enough free chunks available, we simply increment the reserved

count by the number of chunks the mutator will need and any subsequent mutator that

tries to allocate will know that those many chunks have already been reserved from the

free list. It is to note that the pass does not consider array allocations and other alloca-
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radar frames and used to evaluate the performance of C and Java based real-time sys-

tems. CDx consists of two main parts namely the Air Traffic Simulator (ATS) and the

Collision Detector (CD). The ATS generates radar frames, which contain important in-

formation about aircraft, like their callsign and position in 3D space. The ATS produces

a user defined number of frames. The CD analyzes frames periodically and it detects a

collision in a given frame whenever the distance between any two aircrafts is smaller

than a predefined proximity radius. The algorithm for detecting collisions is given in de-

tail in the original paper [11]. The CD performs complex mathematical computations to

discover potential collisions and benchmarks various properties of the system like dead-

line misses and response time for operation. CD processes frames differently based on

how far apart planes are in the frames. It does a simple 2D analysis when planes are

further away and does a more complicated 3D calculation of relative positions when a

collision is imminent. At its core, the benchmark is a single periodic task that repeats

the collision detection algorithm over the subsequent radar frames.

We run the CDx benchmark using a period of 50ms for the CD and leverage a

workload that has heavy collisions and measure the computation time for each release

of the CD thread. We gather numbers over 2000 releases of the CD thread and graph out

the distribution of the computation times and compare it with the deadline for the task.

For readability and due to space constraints we highlight a representative 200 releases.

To measure the predictability of each system we rerun the same benchmark with a noise

making thread, which runs a computation that allocates objects on the same heap as the

CD thread. The noise thread is scheduled along with the CD thread. In RTMLton the

noise making thread is executed in a separate POSIX thread which allows the OS real-

time scheduler to schedule threads preemptively and based on their priority. In vanilla

MLton the noise making thread is just a green thread that is scheduled non preemptively

(co-operatively) with the CD thread. Thus, in MLton all jitter in the numbers is isolated

to the runtime itself as the noise making thread can never interrupt the computation of

the CD thread. If the noise making thread would be scheduled preemptively the jitter

would increase further since MLton does not have a priority mechanism for threads. All

benchmarks are run on an Intel i7-3770 (3.4GHz) machine with 16GB of RAM running

32-bit Ubuntu Linux (16.04) with RT-Kernel 4.14.87.

We expect RTMLton to perform more predictably than MLton under memory pres-

sure as the RTMLton GC is concurrent and preemptible. Figure 5 shows the results of

running the benchmark on RTMLton and MLton respectively. As expected, RTMLton

does not distort the computation time by more than the deadline when the noise thread is

running, but does exhibit overhead compared to MLton as we saw in the regular bench-

marks. The computation time with the noise thread is a little more than without noise

in RTMLton due to the increase in frequency of the CD thread having to mark its own

stack, but it is never exceeds the task deadline of 50 ms. When used with a scheduling

policy which does incremental GC work, by forcing the mutator to mark its own stack

at the end of every period, we expect to the runtime be more uniform irrespective of

noise. We leave exploration of such scheduling policies as part of future work. In the

case of MLton, we can see that the computation time varies up to a maximum of over

400 ms, when it has to compact the heap in order to make space for CD to run. Such

unpredictability is undesirable and leads to a huge impact in terms of missing dead-
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lines and consequently jitter on subsequent releases. The graphs also show that with

no memory pressure vanilla MLton performs better than RTMLton. This is expected

as our system does induce overhead for leveraging chunked objects. Similarly, we have

not yet modified MLton’s aggressive flattening passes to flatten chunked objects. Oper-

ations that span over whole arrays are implemented in terms of array random access in

MLton’s basis library. In MLton’s representation, this implementation is fast; accessing

each element incurs O(1) cost. But this implementation induces overhead in RTML-

ton due to O(log(n)) access time to each element. In this case, the logarithmic access

time is a trade off – predictable performance for GC for slower, but still predictable,

array access times 2. Another source of overhead for RTMLton is the per-block GC

check and reservation mechanism. In comparison MLton performs its GC check more

conservatively, as discussed in section 3.2, but crucially relies on a lack of OS level con-

currency for the correctness of this optimized GC check. Figure 5 shows some frames in

RTMLton taking a lot more time than the others even under no memory pressure; these

computations represent the worst case performance scenario for RTMLton on the CD

benchmark as they are computationally more intensive (due to imminent collisions in

the frame) and do significantly more allocations as well, thereby increasing the number

of times the mutator needs to scan its stack. Although the benchmark triggers the worst

case, RTMLton is still able to meet the task deadline for CD.

To better understand the predictability of object allocation in RTMLton, we imple-

mented a classic fragmentation tolerance benchmark. In this test we allocate a large

array of refs, de-allocate half of it, and then time the allocation of another array which

is approximately the size of holes left behind by the deallocated objects. Figure 6 shows

that when we move closer to the minimum heap required for the program to run, MLton

starts takes a lot more time for allocating on the fragmented heap whereas RTMLton,

with its chunked model, is more predictable. Since we are allocating arrays in the frag-

mentation benchmark we expect the high initial overhead of RTMLton as multiple heap

objects are allocated for every user defined array since they are chunked. Another rea-

son for the default overhead is because we portray the worst case scenario for RTMLton

by having our mutator scan the stacks on every GC checkpoint, irrespective of mem-

ory pressure. Despite these overheads, RTMLton manages to perform predictably when

heap space is constricted and limited. MLton, however, is inherently optimized for the

average case and so the allocation cost degrades when heap pressure is present. We

note that most embedded systems run as close to the minimal heap as possible to max-

imize utilization of memory. Predictable performance as available heap approaches an

application’s minimum heap is crucial and is highlighted in the shaded region of the

Figure 6.

5 Related Work

Real-Time Garbage Collection: There are roughly three classes of RTGC: (i) time

based [3] where the GC is scheduled as a task in the system, (ii) slack based [20] where

2 Almost all dynamically allocated arrays are small and fit into one chunk making them O(1)

access and large arrays are statically allocated and their size known up front so the O(log(n))

access time can be taken into consideration when validating the system.
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to general purpose MLton and show in our evaluation section that our worst case GC

impact is constant which is an important objective to achieve in a real-time language.

We observe that while we are slower than generic MLton, it is due to conservative

design decisions that can be addressed in future revisions of our system. We believe

our biggest contribution in this paper is the integration of a real-time suitable garbage

collector into a general purpose, functional language to allow for the targeting of real-

time systems.
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